MIL-S501xx Series
5x 10/100 N-Way RJ-45 Ports
plus One 100Base-FX fiber Port
MIL-S501ST with ST connector (2km)
MIL-S501SC with SC connector (2km)
MIL-S501SC-15 with SC connector (15km)
MIL-S501SC-40 with SC connector (40km)
MIL-S501SC-70 with SC connector (70km)
MIL-S501MT with MT-RJ connector (2km)
MIL-S501MT-15 with MT-RJ connector (15km)
MIL-S501VF with VF-45 connector (2km)
MIL-S501VF-15 with VF-45 connector (15km)
1
Contents
1. Introduction…….………………………….……….… 4
Features …………………………………………..….….…… 5
Package Contents ………………………..……………….... 6
2. Hardware Description …………………..…..……… 7
Front Panel …………………...……...………………….…… 7
LED Indicators …………………...……...…………..….…… 8
Rear Panel ……………………………………………………. 9
3. Network Application ……………..……….………… 12
Desktop Application …………………….…………...…..… 12
Collapsed Backbone Application ………………….…..… 13
4. Trouble Shooting .………………………..……….… 14
5. Technical Specification .……………….…..…...… 16
Appendix ……………….…………………….…....….… 17
A-1. 100Base-T Technology Review …………….…...…….… 17
A-2. Fast Switching Technology …………………...…………. 18
3
1.
Introduction
Welcome to the World of Mini-Networking.
In the modern business society, communication and sharing
information is crucial. Computer networks have proven to be one
of the fastest modes of communication.
The MIL-S501xx is a compact desktop size switch that is an ideal
solution for small office or home office network user. It provides
wire-speed, Fast Ethernet switching function that allows high-
performance, low-cost connection.
Figure 1-1. The MIL-S501xx
The MIL-S501xx provides 5 switched N-Way 10/100Mbps RJ-45
Ethernet ports and one 100Base-FX fiber port.
The Switch will automatically detect the speed of the device that
you plug into it to allow you to use both 10 and 100Mpbs devices.
The 10Mbps bandwidth will accommodate 10Mbps workgroup
hubs while simultaneously providing the 100Mbps bandwidth
needed to accommodate multimedia applications. The Switch
features a store-and-forward switching and it can auto-learn and
store source address on a 4K-entry MAC address table.
The MIL-S501xx is a 5-port switch coupled with one 100Base-FX
fiber port. There are 5 types of fiber connectors available for the
convenience of your connectivity on the MIL-S501xxs.
4
These fiber connectors are ST, SC multi-mode, SC single-mode,
MT-RJ, and VF-45. The fiber port can be used to connect to a
remote site up to 2 kilometers (SC single-mode up to 70
kilometers) away.
Features
n 5X 10/100Mbps Fast Ethernet UTP switch ports
n MDI uplink port for easy expansion
n One 100Mbps Fast Fiber port
n 1 Dip-Switch to select fiber port full-duplex or half-duplex
mode
n N-Way auto-negotiation supported
n Full-duplex and half-duplex supported
n Store-and forward switching architecture for abnormal packet
filtering
n Full wire speed forwarding rate
n 4K-entry MAC address table
n 256KB Memory Buffer
n LED-indicators for Power, 10/100M, LK/ACT, FD/COL
statuses
n Compact palm size – 6.5”
Package Content
n MIL-S501xx
n Four Rubber Feet with adhesive pads
n One DC power adapter
n Warranty Card
n User’s Manual
5
MIL-S501XX
Rubber Feet
DC power Adapter User’s Manual Warranty Card
Figure1-2. Package Contents
Compare the contents of your MIL-S501xx package with the
standard checklist above. If any item is missing or damaged,
please contact your local dealer for service.
6
2.
Hardware Description
This Section mainly describes the hardware of the MIL-S501xx.
The MIL-S501xx is a compact palm size switch (6.5 inches) with
5x 10/100 N-Way UTP switch ports plus one 100Baes-FX fiber
port.
The physical dimensions of the MIL-S501xx are:
165mm x 100mm x 24mm
6.50 in. x 3.94 in. x .95 in.
Front Panel
The LED indicators are located on the frond panel of the switch.
They provide a real-time indication of systematic operation status.
The Front Panel of the MIL-S501xx is displayed in Figure 2-1.
Figure 2-1. The Front Panel of the MIL-S501xx
7
LED Indicators
The following table provides descriptions of the LED statuses and meaning.
LED Status Color
Description
Power
On
On
Off
Green The power of unit is On
Green The port is operating at the speed of 100Mbps.
In 10Mbps mode or no device attached
100M
On
Green The port is successfully connecting with the device.
LNK /
ACT
Blinks
Off
The port is receiving or transmitting data.
No device attached.
On
Yellow The port is operating in Full-duplex mode.
FDX /
COL
Blinks
Off
Collision of Packets occurs in the port.
Half-duplex mode or no device attached.
8
Rear Panel
The Rear Panel of the MIL-S501xx consists of 5x 10/100 N-Way
UTP switch ports, Uplink Port, one 100Base-FX fiber port, 1 DIP-
switch to select fiber port full-duplex or half-duplex mode, and DC
power connector.
There are five types of fiber connectors available for the
convenience of your connectivity. These fiber connectors are ST,
SC MMF, SC SMF, MT-RJ, and VF-45.
MIL-S501xx with SC (multi-mode) Connector
Figure 2-2. The Rear Panel of the MIL-S501xx with SC Connector
MIL-S501xx with SC (single-mode) Connector
Figure 2-3. The Rear Panel of the MIL-S501xx
with SC (single-mode ) Connector
9
MIL-S501xx with ST Connector
Figure 2-4. The Rear Panel of the MIL-S501xx with ST Connector
MIL-S501xx with MT-RJ Connector
Figure 2-5. The Rear Panel of the MIL-S501xx
with MT-RJ Connector
MIL-S501xx with VF-45 Connector
Figure 2-6. The Rear Panel of the MIL-S501xx
with VF-45 Connector
10
n RJ-45 Ports: Five 10/100 N-Way auto-sensing for 10Base-T
or 100Baes-TX connections.
n Uplink Port: One uplink port to cascade to a hub or switch,
with the maximum distance between the switch to another
device is 100 meters.
n 100Base-FX Fiber Port: There are 5 types of fiber
connectors available for the MIL-S501xx as shown above.
The distance for fiber cabling can be extended up to 2
kilometers for multi-mode fiber and up to 70 kilometers for
single-mode fiber.
n DIPswitch: the DIPswitch is to select Full duplex or Hall-
duplex mode for the fiber port.
n DC Power Connector: Plug DC Power Adapter’s female end
into this device, and the male end of DC Power Adapter into
an AC outlet. The Adapter supplies 5VDC at 2.5 Amps to the
Switch.
11
3.
Network Application
This section provides you a few samples of network topology in
which the Switch is used. In general, the MIL-S501xx is designed
to be used as a desktop or segment switch.
The Switch automatically learns node addresses, which are
subsequently used to filter and forward all traffic based on the
destination address.
Desktop Application
The MIL-S501xx is designed to be a compact desktop size switch
that is an ideal solution for small workgroup. The Switch can be
used as a standalone switch to which personal computers, server,
printer server are connected to form small workgroup.
Figure
3-1.
Desktop
Application
12
Collapsed Backbone Application
You can use Uplink port of the MIL-S501xx to connect with
another hub or switch to interconnect each of your small-switched
workgroups to form a larger switched network. You can also use
fiber ports to connect switches. The distance between two
switches via fiber cable can be up to 2Km with multi-mode fiber or
70Km with single-mode fiber.
The Up-link Port is the same port as port 1, but the pin
assignment has been designed to contain crossover pinout. That
is to say, you can connect this port to hub or switch without
crossover cable.
Figure 3-2. Collapsed Backbone Application
In the above illustration, two MIL-S501xx are used to interconnect
two small workgroups via fiber cable. All the devices in this
network can communicate with each other. Connecting servers to
the Switch allow other users to access the server’s data.
13
4.
Trouble Shooting
The Switch can be easily monitored through panel indicators to
assist in identifying problems. This section describes common
problems you may encounter and where you can find possible
solutions.
n Diagnosing LED Indicator
If Link indicator does not light up after making a connection.
You may check whether network interface (e.g., a network
adapter card on the attached device), network cable, or
switch port is defective or not. Verify that the switch and
attached device are power on. Be sure the cable is plugged
into both the switch and corresponding device. Verified the
proper cable type is used and its length does not exceed
specified limits.
n Power
If the power indicator does turn on when the power cord is
plugged in, you may have a problem with power outlet, or
power cord. However, if the Switch powers off after running
for a while, check for loose power connections, power losses
or surges at power outlet. If you still cannot resolve the
problem, contact your local dealer for assistance.
n Transmission Mode
Verify that each port is set to the same transmission mode
used by the attached device (i.e., half or full duplex). RJ-45
port use auto-negotiation to set the transmission mode. If the
attached device operates at half duplex, the default when
auto-negotiation fails, then it does not have to support auto-
negotiation.
14
n Cabling
A. RJ-45 ports: Use unshielded twisted-pair (UTP) or shield
twisted-pair (STP) cable for RJ-45 connections: Category3, 4
or 5 cable for 10Mbps connections or Category 5 cable for
100Mbps connections. Also be sure that the length of any
twisted-pair connection does not exceed 100 meters (328
feet).
B. 100Base-FX fiber port: Fiber multi-mode connector type
must use 62.5/125 um multi-mode fiber cable. You can
connect two devices over a 2-kilometer distance. [Fiber
single-mode connector type must use 9/125 um single- mode
fiber cable. You can connect two devices over a 70- kilometer
distance in full duplex operation. ]
15
5.
Technical Specification
Specification
Standards
IEEE 802.3 10Base-T Ethernet,
Compliance
IEEE 802.3u 100Base-TX/FX Fast Ethernet
ANSI/IEEE 802.3 N-Way auto-negotiation
CSMA/CD
Protocol
Max Forwarding Rate 14,880 pps per Ethernet port,
and
148,800 pps per Fast Ethernet port
Max Filtering Rate
LED Indicators
Per Port: 5 port N-Way: 100M, LK/ACT, FD/COL
(3 LEDs)
100M Fiber: LK/ACT, FD/COL (3 LEDs)
Per Unit: Power
Network Cables
10Base-T: 2-pair UTP Cat. 3, 4, 5 cable (100m),
EIA/TIA-568 100-ohm STP (100m)
100Base-TX: 2-pair UTP Cat. 5 cable (100m),
EIA/TIA-568 100-ohm STP (100m)
100Base-FX: 50, 62.5/125 micron multi-mode
fiber-optics (2Km)
8,9/125 micron single-mode fiber-optics (70Km)
ST/SC/MT-RJ/VF-45 Multi-mode: Full-duplex-
2Km, Half-duplex- 412m
Fiber Link Max.
Distance
SC Single-mode: Full-duplex- 60Km,
Half-duplex- 412m
Dimensions
165mm x 100mm x 24mm (L x W x H)
0ºC to 45ºC (32ºF to 113ºF)
Operational
Temperature
Operational Humidity 10% to 90% (Non-condensing)
External Power
Supply
5V, 2.5A
Power Consumption 5.5 Watt
EMI
FCC Class B, CE Mark
UL, TUV, CSA
Safety
16
Appendix
What is Switch Ethernet ?
With a high-speed backplane, it is possible to have all ports
communicating at wire speed with minimal latency and low
packet loss
A-1. 100Base-T Technology Review
The 100BaseT standard retains 10BaseT's critical 100-meter
maximum cable length between the hub and desktop. With
100BaseT, the maximum number of repeater Hubs is two. This is
due to the accelerated Ethernet data rate, which requires a
reduction in network diameter in order to detect collisions. Class II
repeaters must be used to build a two-repeater-stack LAN. In a
single-repeater-stack LAN, Class I or Class II repeaters can be
used. Whether the repeater is Class I or Class II is determined by
how much delay is added by the repeater. Most stackable
repeaters are Class I, while non-stackable are usually Class II.
With 100BaseT,the maximum network diameter is approximately
205 meters with UTP cable and 412 meters with fiber cable. By
contrast, a maximum of four repeater hubs is allowed for
10BaseT, providing a maximum network diameter of 500 meters
on UTP.
The 100BaseT standard is comprised of five component
specifications - Media Access Control (MAC) layer, Media
Independent Interface (MII) layer and the three physical layers
(100BaseTX, 100BaseT4 and 100Base FX). 100BaseTX use the
same IEEE 802.3 CSMA/CD MAC protocol layer as 10BaseT and
a similar star topology. There are three distinct cabling variations
in the 100BaseT standard.
They are: *100BaseTX for two-pair data grade Category 5 UTP or
Type 1 STP
17
*100BaseT4 for four-pair voice and data grade Category 3,4 or 5
UTP
*100BaseFX for 2-strand multimode fiber
Media Access Control (MAC) Layer
The MAC layer is based on the same CSMA/CD protocol as
10Mbps Ethernet. The only difference is that it runs 10times
faster.
Media Independent Interface (MII) Layer
The MII is a new specification that defines a standard interface
between the MAC layer and any of the three physical layers
(100BaseTX, 100BaseT4 or 100BaseFX). It is capable of
supporting both 10Mbos and 100Mbps data rates.
100BaseTX Physical Layer
This physical layer defines the specification for 100BaseT
Ethernet over two pairs of Category 5 UTP or Type 1 STP twisted
pair wire. With one pair for transmit and the other for receive, the
wiring scheme is identical to that used for 10BaseT Ethernet. The
UTP connector, a RJ-45, is also identical to the one used for
10BaseT Ethernet. However, the punch-down blocks in the wiring
closet must be category 5 certified
A-2. Fast Switching Technology
There are two big LAN killers: increased demands that new
technology, such as multimedia and videoconferencing, places on
available bandwidth; and the distributed computing architecture
trend being driven by mature implementations of the client/server
model of corporate computing. With a high-speed switch
backplane, it is possible to have all ports communicating at wire
speed with minimal latency and low packet loss.
18
A switch is an intranetwork device designed to increase
performance through LAN segmentation. Switching uses
microsegmentation to isolate traffic. Upon arrival at the hub, a
packet's destination address is read and the packet is sent
directly to the relevant port - not to all ports, as it would be with a
repeater.
For networks experiencing a shortage of bandwidth, the
introduction of a 10Mbps switch will only move the bottleneck
from the hub to the 10Mbps-server pipe. A minimal improvement
will be apparent, due mainly to the decrease in the number of
packet collisions.
To significantly increase performance it is necessary to open up
the pipe to the server. In the past this was achieved by
segmenting the network and installing multiple NICs in the server,
or putting the server on a high-speed backbone such as FDDI.
Vendors have now integrated a Fast Ethernet downlink into the
switch for connection to either the server or backbone. Depending
on your circumstances, this can result in a seven to eight-fold
increase in performance.
As a technology it is easier and cheaper to implement than FDDI
and will run on both multimode fiber and category 5 cabling. Links
can also be made directly to servers, hubs/switches and power
users without the need for costly hardware or recabling. However,
Fast Ethernet is not suitable for a campus-wide backbone as it
suffers from hop and distance limitations, as well as not providing
the redundancy of FDDI and ATM.
How Fast Ethernet is implemented depends on the structure of
your environment, the location of users and servers and the use
of virtual LANs, which allow users to be associated with a specific
workgroup regardless of physical location. This is particularly
important if you have client/server databases being accessed
throughout your organization, or staff in various locations sharing
large amounts of data.
19
Store-and-Forward Switching
Store-and-forward switching is the best choice to keep the
network effective and reliable. Store-and-forward provides
excellent error-checking function. For example, CRC, runt and
collision filter.
Store-and-Forward reads the entire data packet, verifies the
packet and sends it to the destination port. No bad packets on
network, packets can be switched between different network
speeds. Store-and-forward latency is the same as sending a
complete packet, so you will need to consider this latency when
you test the performance.
Full-duplex
Full duplex is a transmission method that effectively doubles the
bandwidth of a link between a network card and a switch. It
disables the collision detection mechanism, so the card and the
switch can transmit and receive concurrently at full wire speed on
each of the transmit and receive paths. A full-duplex segment can
use the same Category 5 UTP cable used by 10BaseT Ethernet
and Fast Ethernet.
20
|
Miele Cooktop KM 5656 User Manual
NAD Turntable 5080 User Manual
Optimus Microcassette Recorder 14 1168 User Manual
Oricom Cordless Telephone ECO80 User Manual
Panasonic All in One Printer KX MC6260 User Manual
Panasonic Blood Pressure Monitor EW3002 User Manual
Panasonic Computer Drive CF VDM732U User Manual
Panasonic Fax Machine KX F220 User Manual
Panasonic Printer JT H200PR User Manual
Panasonic Switch 2SA1739G User Manual